Разработка принципиальной электрической схемы системы управления электропривода

Выбор базисных величин.

Базисный ток системы регулирования

,

где δ - приведенная погрешность системы регулирования в номинальном режиме, принимаем δ = 0,005.

А.

Принимаем Iб.р = 0,7 мА.

Базисное сопротивление системы регулирования

кОм.

Расчет принципиальной схемы регулятора тока

Структурную схему регулятора тока можно представить в следующем виде (рис. 10.1).

Рис. 10.1. Структурная схема регулятора тока.

Принципиальная схема регулятора скорости представлена на рис. 10.2. На этой схеме операторные сопротивления равны

Zос(p) = ,

,

.

Рис. 10.2. Принципиальная схема регулятора тока.

Максимальные значения регулируемых координат и уровни ограничения регулирования следующие

,

iя.max* = iя.max = 2.

Находим полные операторные сопротивления по общим формулам

;

;

.

На рисунке 10.2. эти сопротивления равны

(p) = ,

,

.

Далее находим

мкФ.ос = = 6,86 кОм.

кОм.

мкФ.

кОм.

мкФ.

Вводим масштабный коэффициент kМ = 10.

Тогда значения фактических параметров схемы будут иметь следующие значения

Rфакт = Rрасч·kМ,

.

Рассчитанные новые значения параметров схемы округляем до ближайших по шкале стандартных значений, тогда получим: Rос = 68 кОм; Rвх1 = 39 кОм; Rвх2 = 51 кОм; Cос = 0,89 мкФ;Cвх1 = 0,51 мкФ; Cвх2 = 0,39 мкФ.

Расчет принципиальной схемы регулятора скорости.

Структурную схему регулятора скорости можно представить в следующем виде (рис. 10.3).

Рис. 10.3. Структурная схема регулятора скорости.

Принципиальная схема регулятора скорости представлена на рис. 10.4. На этой схеме операторные сопротивления равны

Zос(p) = ,

,

.

Рис 10.4. Принципиальная схема регулятора скорости.

Максимальные значения регулируемых координат и уровни ограничения регулирования следующие

uоу.max = 1,57,

ωmax = 1,я.max = 2.

Находим полные операторные сопротивления по общим формулам

;

.

Откуда находим

мкФ.

Ом;

кОм;

мкФ.

Rвх2 = 1·10 = 10 кОм.

Введем масштабный коэффициент kМ = 20.

Рассчитанные новые значения параметров схемы округляем до ближайших по шкале стандартных значений, тогда получим: Rос = 30 кОм; Rвх1 = 160 кОм;

вх2 = 200 кОм; Сос = 0,082 мкФ; Свх1 = 1 мкФ.

Расчет параметров задатчика интенсивности.

Принципиальная схема задатчика интенсивности представлена на рис. 10.5.

Нелинейный элемент реализуется на операционном усилителе DA7 за счет включения в обратную связь пары стабилитронов VD6 и VD7. Интегратор реализуется на операционном усилителе DA6. Усилитель DA5 предназначен для инвертирования сигнала.

Принимаем

R19 = R21 = R22 = R20 = R18 = R17 = Rб.р = 10 кОм.

Коэффициент усиления линейной зоны нелинейного элемента принимаем равным 100.

R20 = 100·Rб.р = 100·10 = 1 МОм.

Емкость в обратной связи интегратора:

= мкФ.

Рис. 10.5. Принципиальная схема задатчика интенсивности.

Принципиальная схема регулятора тока и цепи компенсации ЭДС представлена на рис. 10.6.

Перейти на страницу: 1 2

Другие стьтьи в тему

Расчет канала связи
В данной курсовой работе требуется разработать структурную схему системы связи для передачи сигнала, представляющего собой человеческую речь в диапазоне частот 0,3кГц-3,4кГц. Вообще, человеческая речь - это аналоговый сигнал, но для его передачи разрабатываться будет дискретный (цифр ...

Разработка узкополосного частотно-модулированного приемника
Радиосистемы различного назначения, от простейших радиотелефонов до компьютерных радиосетей, пользуются всё большим успехом у пользователей во всём мире. После нескольких десятилетий развития теории и техники радиосистем значительно выросли скорость и качество коммуникационных услуг п ...

Разделы

Радиоэлектроника и телекоммуникации © 2024 : www.techelements.ru