Радиоэлектроника и телекоммуникации
каскадный фильтр синтез полосовой
Для начала необходимо выбрать ФНЧ прототип. Доопределяем частоты, неравномерность АЧХ, нормируем, и (т.к. аппроксимация Золотарева-Кауэра будет иметь минимальный порядок фильтра) по рис.2.7 в [1] находим прототип.
Нормируем частоты границ полос задерживания, пропускания.
Далее определяем граничную частоту фильтра-прототипа:
Выбран прототип С0320. Его параметры:
Выбираем двусторонненагруженную схему, тип "В", R1=R2=300 Ом. Тогда нормированные номиналы элементов:
Далее вычисляем коэффициент частотного преобразования "а" и реоктансно преобразуем прототип:
Далее ренормируем полученные значения согласно [1], получая номиналы элементов фильтра, и в программе MicroCAP посредством компютерного моделирования оценим соответствие характеристик полученного RLC ПФ требуемым.
На рисунке 5 представлена схема RLC ПФ, на рисунках 6 и 7 оценка его полосы подавления и прозрачности соответственно. Резистор 1ГОм в схеме присутствует для связи по постоянному току соответствующего узла, что необходимо для проведения моделирования. Как видим, характеристики соответствуют ТЗ.
Рисунок 5 - Схема в программе MicroCAP спроектированного ПФ
Рисунок 6 - Оценка полосы подавления ПФ
Рисунок 7 - Оценка полосы пропускания и неравномерности ПФ
Далее для представления схемы в виде соединения ФНЧ и ФВЧ необходимо провести преобразования Нортона согласно методике, описанной в [2] стр.222.
При этом происходит разбиение L1b и С3b на последовательное соединение двух катушек и конденсаторов соответственно. Следует отметить, что если после нахождения путем приравнивая резонансных частот полученных Г-образных контуров номиналы получившихся элементов разбиения отрицательны, следует переставить центральные последовательные контура и повторить расчет. Далее проводим преобразование Нортона для получившихся Г-образных контуров.
Проводим второе преобразование Нортона для оставшейся Г-образной цепи, объединяем элементы и получаем окончательные нормированные значения элементов схемы ПФ, полученной соединением ФНЧ и ФВЧ.
Объединяем и ренормируем элементы:
Окончательные значения фильтра ПФ на основе ФНЧ и ФВЧ, схема которого показана на рисунке 8, представлены ниже:
Рисунок 8 - Схема ПФ на основе ФВЧ и ФНЧ
Рисунок 9 - Оценка полосы подавления
Рисунок 10 - Оценка неравномерности и полосы прозрачности
Как видим, параметры полученного фильтра соответствуют ТЗ. Выполним полученный RLC ПФ на основе ФВЧ и ФНЧ с помощью конверторов импеданса. Для ФНЧ части осуществим преобразование Брутона:
Ренормируем номиналы элементов (нормированные, полученные после преобразований Нортона)
Рассчитаем ОКИ на основе методики, предложенной в [2]
Для ФВЧ части необходимо заменить катушку индуктивности имитатором импеданса (метод прямой замены)
Далее необходимо выполнить согласование импедансов ФНЧ и ФВЧ частей, так как в ФНЧ части проводилось преобразование Брутона:
Другие стьтьи в тему
Расчет параметров выпрямительно-инверторного преобразователя, выполненного по шестипульсовой мостовой схеме
Трёхфазный мостовой выпрямительно-инверторный преобразователь (ВИП)
питается от сети с номинальным напряжением UС=U1Л и заданными
пределами колебания этого напряжения %UС Известна мощность короткого замыкания SКЗ, характеризующая реактанс связи точки подключения ВИП и
шин бесконечной ...
Расчет многокаскадного усилителя
При решении многих инженерных задач, например при измерении электрических
и неэлектрических величин, приеме радиосигналов, контроле и автоматизации
технологических процессов, возникает необходимость в усилении электрических
сигналов. Для этой цели служат усилители - ...