Расчет параметров цифрового фильтра

В дробной записи значения квантованных коэффициентов имеют такой вид:

.5625 + 0.8077i

.5625 - 0.8077i

Новое положение полюса: r=0.98427, а θ=124.85°; центральная частота смещается в положение:

Коэффициенты знаменателя были проквантованы до B бит (В=5,6,…,15),включая 1 бит знача и 2 бита для целой части. Затем для каждого значения B были вычислены квантованные коэффициенты и положения полюсов в полярных координатах.

Если при некоторой длине слова радиальное расстояние от полюса до начала координат равно или превышает 1, возникает потенциальная неустойчивость. При анализе было найдено, что для поддержания устойчивости требуется не меньше В = 8 бит. Вообще, если полюс неквантованного звена второго порядка лежит на окружности с радиусом r < 0,9, неустойчивость маловероятна, если использовать длину слова 8 бит или больше. Пример расчета для B=7 бит:

=1,15085*24+0,5=18,9136=18=0,96912*24+0,5=16,00592=16

В дробной записи:

a1=18/16=1.125. a2=16/16=1=

θ=arcos(-a1/2r)= 124.23∘

B

a1

a2

r

θ

Один из полюсов

7

1.125

1

1

124.23∘

-0.5625+0.8268i

8

1.15625

0.96875

0.9843

125.97∘

-0.5781+0.7966i

Масштабный множитель s1 на входе фильтра выбирается так, чтобы предотвратить переполнение или снизить его вероятность на выходе левого сумматора. Чтобы поддержать общее усиление фильтра на предыдущем уровне, коэффициенты числителя умножаются на s1.

Существует три распространенных метода определения подходящих масштабных множителей фильтра. В первом методе, который часто называют нормой L1 масштабный множитель выбирается следующим образом:

коэффициент квантование множитель фильтр

где f(k)- импульсная характеристика, связывающая вход системы с выходом первого сумматора, т.е. узлом w(n). Выбранный таким способом масштабный множитель s1 гарантирует, что общее усиление фильтра от входа до узла w(n) равно единице, поэтому переполнение в w(n) невозможно. Для получения импульсной характеристики f(k) можно вначале определить соответствующую передаточную функцию F(z), а затем применить к ней обратное z-преобразование.

Перейти на страницу: 4 5 6 7 8 9 10 11

Другие стьтьи в тему

Радиолокатор. Радиолокационные станции
В 1887 году немецкий физик Генрих Герц начал эксперименты, в ходе которых он открыл существование электромагнитных волн, предсказанных теорией Джеймса Максвелла. Герц научился генерировать и улавливать электромагнитные радиоволны и обнаружил, что они по-разному поглощаются и отражаю ...

Расчет собственных частот ионосферно-магнитосферного альвеновского резонатора (ИМАР) методами теории возмущений
Важным инструментом в индикации ЧС различного типа, таких как извержения вулканов, землетрясения, промышленные взрывы; космические, наземные и подземные ядерные взрывы, сигналы от стартов ракет и возникающие при полете ракет с включенными двигателями является ионосферно-магнитосферный ...

Разделы

Радиоэлектроника и телекоммуникации © 2025 : www.techelements.ru